Noise in cavity ring-down spectroscopy caused by transverse mode coupling.
نویسندگان
چکیده
In our continuous wave cavity ring-down spectroscopy (CW-CRDS) experiments, we have often observed that the decay time constant drops to a lower value at some cavity lengths or some intercavity pressures. The resulting instabilities lead to a reduction in the sensitivity of our CRDS system. We have deduced that the cause of this noise is the coupling between the TEM(00) mode that the laser excites, and the higher order transverse modes of the cavity. The coupling will cause anti-crossings as the modes tune with cavity length. A consequence is that the decay of light intensity leaving the cavity is no longer a single exponential decay, but the signal can be quantitatively fit to a two-mode beating model. With a 4mm diameter intra-cavity aperture, the higher order modes are suppressed and the stability of the system improved greatly. One coupling mechanism is scattering from the mirror surfaces. This can explain some features of our data including the strength of this coupling and the relative tuning rate of the coupled modes. Remarkably, a scattering intensity between modes of ~ 10(-12) can produce observable changes in the cavity decay rate. However, the tuning rate between the TEM(00) mode and the higher order modes in a cavity pressure scan is larger than predicted and is still not explained. Images of higher order transverse modes excited at certain cavity conditions were recorded by an Indium Gallium Arsenide (InGaAs) area camera.
منابع مشابه
Transverse-mode coupling in a Kerr medium.
We analyze non-linear transverse mode coupling in a Kerr medium placed in an optical cavity and its influence on bistability and different kinds of quantum noise reduction. Even for an input beam which is perfectly matched to a cavity mode, the non-linear coupling produces an excess noise in the fluctuations of the output beam. Intensity squeezing seems to be particularly robust with respect to...
متن کاملNoise caused by a finite extinction ratio of the light modulator in CW cavity ring-down spectroscopy
A model is presented for the effect of a finite extinction ratio of the light modulator used in continuous wave cavity ring-down spectroscopy (CW-CRDS) experiments. We present a simple analytical expression for the minimum isolation required to prevent a significant increase in the fluctuations of the cavity decay rate, which determine the sensitivity of the method. We also present systematic m...
متن کاملOptical heterodyne detection in cavity ring-down spectroscopy
Polarization-selective optical heterodyne detection is shown to enhance the practical sensitivity of cavity ring-down spectroscopy. Initial experiments demonstrate a signal-to-noise ratio above 31 dB. Minor improvements should yield shot-noise-limited operation. q 1998. Published by Elsevier Science B.V. All rights reserved.
متن کاملSimultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy.
Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach ...
متن کاملCavity ring-down spectroscopy for detection in liquid chromatography: extension to tunable sources and ultraviolet wavelengths.
In earlier studies, it was demonstrated that the sensitivity of absorbance detection in liquid chromatography (LC) can be improved significantly by using cavity ring-down spectroscopy (CRDS). Thus far, CRDS experiments have been performed using visible laser light at fixed standard wavelengths, such as 532 nm. However, since by far most compounds of analytical interest absorb in the ultraviolet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2007